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Abstact

With the rise of Al technologies in different social sectors, understanding the internal states
of deep neural networks is becoming a critical research field that tackles the black box prob-
lem. One possible approach is probing, a regression analysis that takes internal activations
as independent variables and regresses target information. This method quantifies how in-
formative the representations are in relation to the dependent variables. 1 implemented
probing for a simple three-layer neural network for binary image classifications with three
regression models: linear probability models, logistic regression, and neural networks. The
results revealed that all three layers possess equally rich information for the binary image
labels. Through further statistical analysis, I discovered that the representation vectors from
deeper layers are more multicollinear. By applying Principal Component Analysis (PCA) to
mitigate multicollinearity, I also found out that the vectors essentially acquired an equally
useful representation. Heteroskedasticity tests showed that the data was heteroskedastic at
a high significance level, and the training steps did not affect it.



1 Introduction

1.1 Overview

Neural networks are essential building components of recent AI models such as ChatGPT
[1]. Although neural network predictions often outperform linear regression models because
of their flexible representation capacity, their internal states are hard to interpret compared
to linear models. For instance, the common multivariate linear regression can be written in
the following form: R

Y =0+ 51 X1+ BoXo+ - + 8, X

where Y is an estimated value of a dependent variable Y, and ; are the coefficients of
independent random variables X;. This is easy to interpret. In contrast, neural networks
with m layers are often represented as:

~
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where o is the function composition operation, X = (X1, Xo, ..., X,], T; is a transformation
such that Tl(‘?) = A,V + b; for some input vector ‘7, matrix A; and bias vector b;, and
f is some function (mostly non-linear) that slightly modify outputs from 7;. Repetitively
applying f o T gives rise to the non-linearity of neural network functions. We train neural
networks so they learn patterns in a dataset through multiple training steps. During the
training, the error between the output Y and the true value Y is calculated. This error
function is called a loss function, and neural networks update the values of their matrices A;
and bias vectors b; by taking the gradient of the loss function. This is how training optimizes
neural networks to fit to the given dataset.

1.2 Motivation

Due to the multiple transformations and non-linear functions within neural networks, it
becomes hard to interpret what the matrix and bias vector in each transformation represent
compared to simple linear regression models, in which the coefficients denote how much each
variable contributes to the estimated point Y. The uninterpretability of neural networks
is named the black box problem and has stimulated various research endeavors, including
explainable AI (XAI) [6]. Given that Al systems are implemented in many different sectors
today, understanding how AI thinks is one of the critical themes of ongoing research. I aim
to tackle this problem through a popular approach called probing [5]. My research questions
are mentioned in Section 4.

1.3 Approach

Probing applies regression analysis to measure how rich information an internal vector con-
tains in relation to target data. Let an activation Y; = [Y;1,Yi2,...,Y;m] represent the
output vector of the i-th transformation 7; in Equation 1: Y; = T;(f;_1(Yi—1)). Note

—

that the first activation is produced from the observation vector: Y; = T7(X). In prob-



ing, regression models P, namely probes, regress some target information using the vector
17,- = [Yi1,Y2,..., Y] as m independent variables. If P produces good predictions, this in-
dicates that Y; are good independent variables, or more specifically, contain rich information
about the target.

2 Notations

Here, I outline notations that frequently appear in this paper. T; indicates the i-th trans-
formation layer in a neural network. f; represents a function applied to the output from 7;.
Most models uses a single non-linear function throughout their pipeline, so I occasionally
write f to denote the unique function. X = (X1, Xo, ..., X;,] is an n-dimensional observation
and an input to a neural network. An activation Y, = [Yi1,Yio,...,Yin] is an m-dimensional
vector from the i-th layer in the neural network. Therefore, each observation X has corre-
sponding activations Yl, Ya through Y, for each transformation in Equation 1. In my paper, P
is a probe/ functlon/ regression model that takes activations and maps them to a probability
p: p= P(Y; ) One example of P is logistic regression.

3 Literature Review

In this section, I aim to introduce some prior works on probing and simultaneously deepen
the audience’s understanding of its method through concrete examples.

3.1 Machine Learning in Regression Analysis

Before discussing probing techniques, it is worth noting that machine learning algorithms are
closely tied to regression analysis in many fields. Decision trees [10] and their families, such
as random forest and gradient boosting, are popular regression algorithms for their accuracy
and interpretability. Ridge and Lasso regressions [13], regularized linear regression models,
are also important linear models in machine learning. These machine learning models are

applied in many different areas, such as political sciences [7], chemistry [4], and economics
[15].

3.2 Probing Neural Networks

Gurnee and Tegmark [8] applied Ridge regression and neural nets to measure the spatiotem-
poral representations within large language models (LLMs). LLMs are neural-network-based
ATl models that deal with language, such as ChatGPT. For spatial information, they gave
LLMs prompts asking for the latitude and longitude of a specific place in the world, and
for temporal information, the LLMs were asked about historic dates related to well-known
books, figures, and et cetera. Activations produced by those stimuli were collected and
used as independent variables to regress the latitudes and longitudes of the places or the
associated years to the historic events. The researchers discovered that the linear model



can predict the dependent variables with high accuracy, concluding that the spatio-temporal
representations within LLMs are linearly related to the target values.

Multiple research works have applied probing to investigate representations of neural net-
works in various modalities, like text and image. McCoy and Leshinskaya [12] applied regres-
sion analysis to investigate how an LLM understands subject-object relations. Specifically,
they focused on the has-color relation; for instance, the subject is bananas, and the relation
between the subject and object is have the color of, then the expected object is yellow. They
gave prompt queries asking the color of a particular subject, collected activations from the
fifth layer of the LLM (Y3), and regressed the final output Y;.

Alain and Bengio [3] introduced linear classifier probes as a tool to understand the infor-
mation captured in intermediate layers of neural networks. They collected activations from
each layer of their neural network for image classification. Results revealed that the error of
probes decreased as they used activations from deeper (later) layers as independent variables.
Rashtchian et al. [17] probed image encoders of foundation models (Al models processing
multimodal data) to quantify how the encoders generalize image representations. They col-
lected activation vectors by giving the same images, but with different visual effects, and
discovered that the representations that the encoders obtain from these differentially edited
images converge well. Ilharco et al. [9] focused on the multimodal relations between con-
textual text representations with corresponding visual features by regressing image features
based on activations from text-only LLMs. Results indicated that language representations
are strong signals for predicting visual features.

Akhondzadeh et al. [2] leveraged linear, Bayesian, and pairwise probing to investigate the
relations between the representations of graph-based models with important chemical prop-
erties like functional groups and odors. Ngo and Kim [14] trained probes to align language
representations in LLMs with sound representations from audio models.

4 Research Directions and Questions

Despite the considerable number of prior studies, few have focused on the statistical analysis,
such as heteroskedasticity test and multicollinearity, of representations along with probing.
In this work, I aim to (1) mildly replicate existing research on probing techniques and (2)
apply statistical analysis to internal representations for further understanding than prob-
ing. The research questions in this work are (1) which activation outputs Y; contain rich
information, and (2) how the amount of training affects representation learning.

5 Data Collection

5.1 Training and Architecture

To collect activation vectors, I first trained my neural network with 2,000 images of cats and
dogs from the CIFAR10 dataset [11]. The model classifies whether a given image is likely to
be a cat or a dog. The training pipeline is as follows: (1) give the model an image and have



it predict probability p that the image is a cat; (2) calculate binary cross-entropy between p
and its true label as an error score; (3) repeat step (1) and (2) for 1,600 training images; (4)
calculate a validation score with 400 unseen data; and (5) repeat step (1) through (4) for
100 times with the same training and validation data. Each repetition of steps (1) through
(4) is called an epoch.

The model consists of a convolution part and a neural net part. Convolution layers compress
a 64 x 64 x 3 (height, width, and channels) image into 13 x 13 x 16. Note that the convolution
layers are also trainable.

The neural network has three layers: 77,7, and T3. Each T; maps f (}71»_1) or X to a vector
of 60 dimensions. Therefore, T} : R2704=13:13-16 _ R60 77, - R6O 5 R6O and Ty : RS — R6O,
A non-linear function f called Rectified Linear Unit follows 17, T, and T3. One final layer
T, transfoms the 60-dimensional vector from the previous transformation 75 to a scalar. The
logistic function ¢ turns the scalar into probability p.

The overall model architecture is outlined below:

p:(aoT4ofoT30foT2ofoT1oconv)()?)

where conv is the convolution part, and X is an image vector.

5.2 Data Requirement

After each epoch during training, I gave the same 2,000 images to the network and collected
ﬁ, }72, and Ys for each image. Therefore, I collected 600, 000(= 2,000 images x 3 layers x
100 epochs) activations in total. I restricted the output dimension of 7y, Ty, and T3 to 60 in
order for Y; to have the same dimension size, which, later in probing, prevents the variability
of regression performance due to the different number of independent variables. In short, the
data I collected is cross-sectional data consisting of 300 .csv files (3 files for each of the three
layers, multiplied by 100 epochs) with a table of 60 independent variables (Y;) and 2,000
observations for each file (refer to Figure 1 for details). I did not implement any control or
instrument variables because of the nature of my research. The details of data preprocessing
are explained in Section 6.2.

5.3 Assumptions and Diagnostics

For statistical analysis, I focused on two metrics, heteroskedasticity and multicollinearity. For
heteroskedasticity, I ran the Breusch-Pagan test to calculate p-values for the null hypothesis
of homoskedasticity. The left plot in Figure 2 shows that the entire data is heteroskedastic
at a very high significance level (p-value <<< 0.001). Only the first layer experiences rapid
increases of p-value, but this trend is inconsistent.

VIF of the second and third layers are also extremely high. VIF's of the third layer activations
converges around 3 as the epoch approaches the end of training. Therefore, the activations
from the first layer are mildy multicollinear, and those of the second and third layers have
high multicollinearity. However, I can observe the downward trend of VIF as the amount



Figure 1: .csv file of the first layer at epoch 1
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The table includes expected labels and vector values as columns. scalar_j denotes the j-th value
(Y; ;) in the vector (Y; = [Yi1,...,Yi ,...,Yim]). Indexes on the leftmost column number
different 2,000 activations.

of training increases and the mean VIF converges to certain value points (this trend is also
observable in the third layer).

Figure 2: Heteroskedasticity and VIF
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The left line plot is the p-values for the heteroskedasticity test, and the right graph shows the
mean VIF within data from each layer and epoch. Note that the y-axis of the left graph is scaled
by le-5 (1.0 in the y-axis is equal to 0.000001), and VIF is scaled by lel4 = 100,000,000,000,000.

6 Methodological Framework

6.1 Probes

I prepared three regression models as probes. The first is linear probability models:

p= 0o+ B1Yi1+ BaYia+ -+ BeoYieo

Although this model cannot capture the trend of cumulative Gaussian distribution functions,
it serves as a good measure of the linearity of representations because it directly applies linear
regression for probability p. In other words, if a linear probability model predicts probabilities
with high accuracy, the independent variables Y;,Y;9,...,Y;60 have high linearity with



target labels. We clipped any p > 1 as 1 and p < 0 as 0.
The second model is the logistic regression model. Logistic regression captures the natural
shape of the cumulative Gaussian distribution functions and is a popular model for binary

classification. )

"1 +exp(—(Bo+ B1Yi1 + BoYio + - + BeoYieo))

Finally, I introduce simple three-layer neural networks. Neural networks serve as a good
indicator of non-linearity in activations. If the accuracy of linear probability models and
logistic regression is low while the neural networks regress well, there is a non-linear rela-
tionship between the activations and true labels. I applied the three models to each of the
300 .csv files and recorded the accuracy. I split 2,000 observations into training and test
datasets.

p

6.2 Data Preprocessing

Most values of my data range from 0.3 and -0.3, which resulted in the poor convergence of
the regression models. Therefore, I standardized the values. Standardization is given by

l‘ p—
Tstg = S where p is the mean of the independent variable X, which sample z belongs

to, and UUiS the standard deviation of the variable. In the follow-up research mentioned
later, I also performed principal component analysis (PCA) to reduce the dimensions of the
observations from 60 to 10. PCA essentially removes unnecessary, sparse representations
and compresses data to lower dimensions while retaining most of the information contained
in the original data.

7 Results

7.1 Probing Results

Figure 3 shows the results of probing. The linear probability models suffer from fluctuating
accuracy. Logistic regression is more robust than linear probability models, but there still
exists a large decline in accuracy. In contrast, neural networks regressed the true labels
more stably. Moreover, the overall results show that the first layer contains more stable
representations, while the activations from the second and third layers resulted in slightly
lower or significantly lower accuracy in the logistic models and linear probability models.
These graphs present counterintuitive results, as I initially speculated that representations
would grow richer as the layer goes deeper, closer to the output layer. However, in Section
4, T identified the multicollinearity in the activation data and hypothesized that it degraded
the accuracy of the probes.

7.2 Probing Results with PCA

Speculating that the high multicollinearity contributes to the low accuracy with the second
and third layers, I performed PCA to reduce dimensionality. PCA mitigates multicollinearity
by creating new variables that are linearly unrelated to each other [16]. Probing results



Figure 3: Accuracy of Probes on Test Data

The upper-left graph is the linear probability models, the upper-right is the logistic mod-
els, and the bottom-left is the neural networks. The blue lines represent the scores of probes on
the activations from the first layer, the orange lines correspond to the second layer, and the green
lines track that of the third layer.

after PCA are outlined in Figure 4. I can observe clear improvements in the accuracy
scores across the three probes, especially in the linear probability models. Furthermore, the
accuracy scores across different layers generally stay at almost the same level, indicating
that activations from the first, second, and third layers possess equally rich information.
Moreover, the stable accuracy scores of the linear probability models indicate that there is
a solid linear relationship between the activations and true labels.




Figure 4: Accuracy of Probes on Test Data after PCA

The upper-left graph is the linear probability models, the upper-right is the logistic mod-
els, and the bottom-left is the neural networks.

8 Conclusion

In this study, I investigated how the internal representations of neural networks in binary
image classification change depending on the depth of layers and training amount. I dis-
covered that the layers later in the network pipeline possess representations with higher
multicollinearity. However, the multicollinearity in every layer declines and converges to cer-
tain points of value as the amount of training increases. Further regression analysis on the
data after PCA revealed that the representations from different layers possess the equivalent
level of information about the true binary labels.

My research indicates that probing techniques are a suitable approach to understand how
Al thinks by quantifying what kind of representations it acquires. The results also present
answers to the research questions: (1) every layer contains equally rich information, and
(2) the number of training steps does not affect accuracy or heteroskedasticity but makes
multicollinearity converge.

This research contributes to the further understanding of deep neural network models not
only through probing but also via statistical analysis. Limitations posed to this work are
that I solely focused on neural networks for binary image classification. I also failed to repli-
cate similar results with Alain and Bengio [3], who argued that deeper layers contain richer
representations in binary image classification. Thus, further studies should be done to apply
my analysis methods to neural networks with broader tasks and perform stricter replication
studies.
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